
For more information, visit us at www.netfoundry.io
Contact us Share © 2021 NetFoundry, Inc.

STOP DATABASE
BREACHES WITH
ZERO TRUST ACCESS
IN JDBC

Data is more distributed

Data is the life blood of every organization. Data was traditionally stored in centralized databases running in corporate controlled
data centers. That reality has changed dramatically. Today, organizations are building and deploying composite applications that
combine existing and new functionality, often cloud based, to support new user experiences and digital business opportunities.
Composite applications access data stored in multiple databases, from multiple sources and providers, in multiple clouds, and
increasingly from highly distributed edge environments.

Securing composite applications and the data they use is extremely difficult and complex. Security professionals will tell you –
complexity creates risk. A recent study found that almost half of internet facing databases (more than 12,000 in total) currently
have vulnerabilities with a CVE rating of as “high” or “critical” while another study found 80% of internet exposed services are
compromised by threat actors in under 24 hours. Clearly, exposing your database to the internet is bad!

Any inbound port is a risk to your business.

Access to databases is typically done using JDBC defining how a client may access the database. As businesses, wisely, do not
want to expose their databases to the internet, they normally implement traditional methods such as Firewalls, VPNs, and dedi-
cated private circuits (MPLS).

Unfortunately these “solutions” introduce additional complexity and vulnerabilities while slowing down innovation and creating a
poor user experience:

• Open Firewall ports and public IPs are prime targets for DDoS
and brute force attacks

• Maintaining firewall rules adds complexity and has a high
potential for errors

• VPNs are cumbersome to set up and maintain, and deliver a
poor user experience

• Users may seek “alternate” methods for accessing databases
to get around constraints imposed by VPNs

• It is common to experience performance problems with VPNs
- see for yourself

http://www.netfoundry.io
https://netfoundry.io/about/contact-us/
https://www.facebook.com/NetFoundry/
https://twitter.com/netfoundry
mailto: info@netfoundry.io
https://www.linkedin.com/company/netfoundry
https://www.theregister.com/2021/09/14/imperva_12k_database_vuln_report/
https://www.bleepingcomputer.com/news/security/threat-actors-find-and-compromise-exposed-services-in-24-hours/
https://www.google.com/search?q=vpn+jdbc&oq=vpn+jdbc&aqs=chrome..69i57.2070j0j1&sourceid=chrome&ie=UTF-8

For more information, visit us at www.netfoundry.io
Contact us Share © 2021 NetFoundry, Inc.

This generic diagram is similar to how a cloud-native data warehouse
platform recommends options to provide ‘private’ connectivity to their
cloud hosted solution - it looks complicated because it is complicated!
Adding complexity, increasing costs, and consuming valuable precious
human resources to manage these systems is not a recipe for success.
Some companies have partially solved the problem, e.g., Tableau, with
their Bridge solution, but we need to be able to apply this to every sce-
nario and use case while making both sides of the connection outbound.

What we really need is an open-source, ‘clientless’ solution which can
be bundled into the applications leveraging JDBC to embed private,
software-defined, zero trust connectivity. With this sort of solution, all
databases and applications can be ‘dark’ to the internet (i.e., no public IP
or inbound ports).

Diagram 1 - Suggested ‘private’ connectivity options

Step forward Ziti

Luckily, the solution needed and described above does exist, provided by NetFoundry, built on OpenZiti.

By building Zitified JDBC (or ZDBC as we like to call it), we enable anyone to use private, outbound-on-
ly connectivity between their databases, applications and users without modifying existing vendor
drivers, application code, or the database making it is simple to use with any customer application or
third party tools.

As any communication to the database mandates usage of a database driver and API, ZDBC effectively
gives us ‘clientless’ zero trust - just drop in ZDBC instead of JDBC/ODBC.

This plays out in two scenarios:

Diagram 2 - Zitified JDBC options

1. User to database access - for example, a data scientist using a data analysis tool to directly
query some data source. That tool uses JDBC drivers, provisioned by the user, IT and/or the solu-
tion provider. Now they just use ZDBC.

2. Server to database access - for example, Oracle web logic is directly talking to backend data-
bases. Instead of using JDBC, now it uses ZDBC.

Secure while subtracting

While practitioners will love the fact that they do not need to modify their code. Security will adore outbound only connectivity so that
apps and databases are dark to the internet. What other activities no longer need to be done?

• No need to deploy and maintain VPNs, jump servers, bastion, MPLS, or
static access controls as well as DDoS appliances, IPS/IDS, DNS trickery or
SAML integration

• No need to open different inbound ports or maintain complex firewall
rules - you only need outbound 80, 443, 6262

• If your vendor has embedded Ziti into their solution, you no longer need to
maintain a cloud account and private connectivity (e.g., AWS PrivateLink or
Azure Private Endpoint)

• No need to worry about what internal and external bad actors can access,
the default is nothing. You set the policy and see access to resources based
on identity (rather than IP) - check out the NetFoundry blog on how we use
Ziti to protect our DevOps environment

• No need for users to maintain a connectivity client on their device (e.g.,
VPN)

• No need to build and maintain your own solution (e.g., Tableau Bridge)

Diagram 3 - Cloud-native private connectivity

http://www.netfoundry.io
https://netfoundry.io/about/contact-us/
https://www.facebook.com/NetFoundry/
https://twitter.com/netfoundry
mailto: info@netfoundry.io
https://www.linkedin.com/company/netfoundry

For more information, visit us at www.netfoundry.io
Contact us Share © 2021 NetFoundry, Inc.

The 1,2,3 for Securing Database Access

Step 1: Seal off your database - deny all inbound ports on your firewall

Typical firewalls have thousands of rules, exceptions and policies. Replace
them with one rule - deny all inbound sessions. Cyberattacks can no longer
get to your database.

Step 2: Secure access for data clients – Apply Zero Trust to the JDBC/
ODBC API

Provide your users and applications with the Zitified JDBC driver. This wrap-
per incorporates zero trust capabilities into the driver and it can now access
network resources securely from anywhere in the world, provided that they
have internet access. Diagram 4 - How Zitified JDBC architecture looks

Go Open Source

We aim to cover the world in Ziti, that’s why we open source it and its components - including the ZDBC wrappers, here is the
Zero Trust wrapper for JDBC. We also provide open SDKs options to embed Zero Trust directly into your apps, and any device,
so that you have full flexibility to choose whatever is simplest for you.

Check out and contribute to the OpenZiti project to help the world be more secure and simple by design!

Step 3: Private Fabric Brokers

With inbound ports closed, how do we access the database? ZDBC endpoints open outbound-only sessions to Private Edge
Routers, hosted by NetFoundry, using our system of embedded identity (based on X.509). All other attempts to access the overlay
network are denied. In fact, the entire network and your databases are invisible to outsiders. Malware cannot attack something it
cannot see.

ABOUT NETFOUNDRY
NetFoundry is the leader in Cloud-Native Networking, enabling businesses to simply, securely and cost-effectively connect distributed applications
across edges, clouds and service meshes. The NetFoundry platform, delivered as SaaS, enables businesses to connect applications without the costs
and complexity of VPNs, custom hardware and private circuits.

NetFoundry’s platform is accessed via APIs, SDKs and DevOps tools integrations, enabling practitioners, application developers, and network
administrators to get the levels of automation and agility which are only possible with connectivity-as-code. NetFoundry is headquartered in Charlotte,
North Carolina, with offices in California, Colorado, New York, London, Bangalore, and Singapore.

OpenZiti Project: https://openziti.github.io/index.html

Video: Secure Access to Postgres: https://www.youtube.com/watch?v=k2KlFXDQxvo

Web: https://netfoundry.io/

Blog: https://netfoundry.io/about/blog/

Twitter: @NetFoundry

LinkedIn: https://www.linkedin.com/company/netfoundry/

ADDITIONAL RESOURCES

http://www.netfoundry.io
https://netfoundry.io/about/contact-us/
https://www.facebook.com/NetFoundry/
https://twitter.com/netfoundry
mailto: info@netfoundry.io
https://www.linkedin.com/company/netfoundry
https://github.com/openziti-incubator/zdbc
https://github.com/openziti-incubator/zdbc
https://openziti.github.io/index.html
https://openziti.github.io/index.html
https://www.youtube.com/watch?v=k2KlFXDQxvo
https://netfoundry.io/
https://netfoundry.io/about/blog/
https://twitter.com/NetFoundry
https://www.linkedin.com/company/netfoundry/

